Анатомия и физиология человека (с возрастными особенностями детского организма) - Сапин М.Р., Сивоглазов В. И. 2002

Строение тела человека
Клетки

Человеческий организм, представляющий собой единую, целостную, сложно устроенную систему, состоит из органов и тканей. Органы, которые построены из тканей, объединены в системы и аппараты. Ткани, в свою очередь, состоят из различных видов клеток и межклеточного вещества.

Клетка — это элементарная, универсальная единица живой материи. Клетка имеет упорядоченное строение, способна получать энергию извне и использовать ее для выполнения присущих каждой клетке функций. Клетки активно реагируют на внешние воздействия (раздражения), участвуют в обмене веществ, обладают способностью к росту, регенерации, размножению, передаче генетической информации, приспособлению к условиям внешней среды.

Клетки в организме человека разнообразны по форме, они могут быть плоскими, круглыми, овоидными, веретенообразными, кубическими, отростчатыми. Форма клеток обусловливается их положением в организме и функцией. Размеры клеток варьируют от нескольких микрометров (например, малый лимфоцит) до 200 мкм (яйцеклетка).

Межклеточное вещество представляет собой продукт жизнедеятельности клеток и состоит из основного вещества и расположенных в нем различных волокон соединительной ткани.

Несмотря на большое многообразие, все клетки имеют общие признаки строения и состоят из ядра и цитоплазмы, заключенных в клеточную оболочку — цитолемму (рис. 3). Оболочка клетки, или клеточная мембрана (цитолемма, плазмалемма), отграничивает клетку от внешней среды. Толщина цитолеммы равна 9—10 нм (1 нанометр равен 10-8 м или 0,002 мкм). Построена цитолемма из белковых и липидных молекул и представляет собой трехслойную структуру, наружная поверхность которой покрыта тонкофибриллярным гликокаликсом. В состав гликокаликса входят различные углеводы, которые образуют длинные ветвящиеся цепочки полисахаридов. Эти полисахариды связаны с белковыми молекулами, которые входят в состав цитолеммы. У цитолеммы наружный и внутренний электронно-плотные липидные слои (пластинки) имеют толщину около 2,5 нм, а средний — электроннопрозрачный слой (гидрофобная зона липидных молекул) — около 3 нм. В билипидном слое цитолеммы находятся молекулы белка, некоторые из них проходят через всю толщу клеточной оболочки.

Цитолемма не только отделяет клетку от внешней среды. Она защищает клетку, выполняет рецепторные функции (воспринимает воздействия внешней для клетки среды), транспортную функцию. Через цитолемму происходит перенос различных веществ (воды, низкомолекулярных соединений, ионов) как внутрь клетки, так и из клетки. При затрате энергии (расщеплении АТФ) через цитолемму активно транспортируются различные органические вещества (аминокислоты, сахара и др.).

Цитолемма образует также межклеточные соединения (контакты) с соседними клетками. Контакты могут быть простыми и сложными. Простые соединения бывают в виде зубчатого шва, когда выросты (зубцы) цитолеммы одной клетки внедряются между выростами соседней клетки. Между цитолеммами соседних клеток имеется межклеточная щель шириной 15—20 нм. Сложные контакты образованы или плотно прилежащими друг к другу клеточными оболочками соседних клеток (плотные контакты), или наличием между соседними клетками тонкофибриллярного вещества (десмосомы). К проводящим контактам относятся синапсы и щелевидные контакты — нексусы. У синапсов между цитолеммой соседних клеток имеется щель, через которую происходит транспорт (передача возбуждения или торможения) только в одном направлении. У нексусов щелевидное пространство между соседними цитолеммами разделено на отдельные короткие участки специальными белковыми структурами.

Рис. 3. Схема ультрамикроскопического строения клетки: 1 — цитолемма (плазматическая мембрана), 2 — пиноцитозные пузырьки, 3 — центросома (клеточный центр, цитоцентр), 4 — гиалоплазма, 5 — эндоплазматическая сеть (а — мембраны эндоплазматической сети, б — рибосомы), 6 — ядро, 7 — связь перинуклеарного пространства с полостями эндоплазматической сети, 8 — ядерные поры, 9 — ядрышко, 10 — внутриклеточный сетчатый аппарат (комплекс Гольджи), 11 — секреторные вакуоли, 12 — митохондрии, 13 — лизосомы, 14 — три последовательные стадии фагоцитоза, 15 — связь клеточной оболочки (цитолеммы) с мембранами эндоплазматической сети

Цитоплазма неоднородна по своему составу, она включает в себя гиалоплазму и находящиеся в ней органеллы и включения.

Гиалоплазма (от греч. hyalinos — прозрачный) образует матрикс цитоплазмы, ее внутреннюю среду. Снаружи она отграничена клеточной мембраной — цитолеммой. Гиалоплазма имеет вид гомогенного вещества, представляет собой сложную коллоидную систему, состоящую из белков, нуклеиновых кислот, полисахаридов, ферментов и других веществ.

Важнейшая роль гиалоплазмы состоит в объединении всех внутриклеточных структур и в обеспечении их химического взаимодействия друг с другом. В гиалоплазме синтезируются белки, необходимые для жизнедеятельности и функций клетки. В гиалоплазме откладываются гликоген, жировые включения, содержится энергетический запас — молекулы аденозинтрифосфорной кислоты (АТФ).

В гиалоплазме располагаются органеллы общего назначения, которые имеются во всех клетках, а также непостоянные структуры — цитоплазматические включения. В число органелл входят митохондрии, внутренний сетчатый аппарат (комплекс Гольджи), цитоцентр (клеточный ценр), зернистая и незернистая эндоплазматическая сети, рибосомы, лизосомы. К включениям относятся гликоген, белки, жиры, витамины, пигментные вещества и другие структуры.

Органеллами называют структуры цитоплазмы, постоянно встречающиеся в клетках и выполняющие определенные жизненно важные функции. Различают органеллы мембранные и немембранные. В клетках определенных тканей встречаются специальные органеллы, например миофибриллы в структурах мышечной ткани.

Мембранные органеллы — это замкнутые одиночные или связанные друг с другом микроскопической величины полости, отграниченные мембраной от окружающей их гиалоплазмы. Мембранными органеллами являются митохондрии, внутренний сетчатый аппарат (комплекс Гольджи), эндоплазматическая сеть, лизосомы, пероксисомы. Эндоплазматическая сеть подразделяется на зернистую и незернистую. Обе они образованы цистернами, пузырьками и каналами, которые ограничены мембраной толщиной около 6—7 нм. Эндоплазматическую сеть, к мембранам которой прикреплены рибосомы, называют зернистой (шероховатой) эндоплазматической сетью. Если нет рибосом на поверхности мембран — это гладкая эндоплазматическая сеть.

Мембраны эндоплазматической сети участвуют в транспорте веществ в клетке. На рибосомах зернистой эндоплазматической сети осуществляется синтез белков, на мембранах гладкой эндоплазматической сети синтезируются гликоген и липиды.

Внутренний сетчатый аппарат (комплекс Гольджи) образован мембранами плотно лежащих плоских цистерн и расположенных по их периферии многочисленных мелких пузырьков (везикул). Места скопления этих мембран получили название диктиосом. В одну диктиосому входит 5—10 плоских мембранных цистерн, разделенных прослойками гиалоплазмы. Мембраны внутреннего сетчатого аппарата выполняют функции накопления, химической перестройки веществ, которые синтезирует эндоплазматическая сеть. В цистернах комплекса Гольджи синтезируются полисахариды, которые образуют комплекс с белками. Комплекс Гольджи участвует в выведении синтезированных веществ за пределы клетки и является источником формирования клеточных лизосом.

Митохондрии имеют гладкую внешнюю мембрану и внутреннюю мембрану с выпячиваниями в виде гребней (крист) внутрь митохондрии. Складчатость внутренней митохондриальной мембраны существенно увеличивает ее внутреннюю поверхность. Внешняя мембрана митохондрии отделена от внутренней узким межмембранным пространством. Полость митохондрии между кристами заполняет матрикс, имеющий тонкозернистое строение. В его состав входят молекулы ДНК (дезоксирибонуклеиновой кислоты) и митохондриальные рибосомы. Поперечник митохондрий составляет в среднем 0,5 мкм, а длина достигает 7—10 мкм. Основной функцией митохондрий является окисление органических соединений и использование освобождающейся при этом энергии для синтеза молекул АТФ.

Лизосомы — это шаровидные структуры размерами 0,2— 0,4 мкм, ограниченные мембраной. Наличие в лизосомах гидролитических ферментов (гидролаз), расщепляющих различные биополимеры, свидетельствует об участии их в процессах внутриклеточного переваривания.

Пероксисомы (микротельца) представляют собой небольшие вакуоли размерами 0,3—1,5 мкм, ограниченные мембраной и содержащие зернистый матрикс. В этом матриксе присутствует каталаза, разрушающая перекись водорода, образующуюся при действии ферментов окислительного дезаминирования аминокислот.

К немембранным органеллам относятся рибосомы, микротрубочки, центриоли, микрофиламенты и другие образования. Рибосомы являются элементарными аппаратами синтеза белковых, полипептидных молекул. Состоят рибосомы из гранул рибонуклеопротеида (диаметром 20—25 нм), в образовании которых участвуют белки и молекулы РНК. Наряду с одиночными рибосомами в клетках имеются группы рибосом (полисомы, полирибосомы).

Микротрубочки располагаются в цитоплазме клеток. Они представляют собой полые цилиндры диаметром около 24 нм. Образованы микротрубочки белками тубулинами. В цитоплазме микротрубочки образуют цитоскелет и участвуют в двигательных функциях клеток. Микротрубочки поддерживают форму клеток, способствуют ориентированным их движениям. Микротрубочки входят в состав центриолей, веретена деления клетки, базальных телец, жгутиков, ресничек.

Центриоли представляют собой полые цилиндры диаметром около 0,25 мкм и длиной до 0,5 мкм. Стенки центриолей построены из микротрубочек, которые образуют девять триплетов (9*3), соединенных друг с другом. Две центриоли, лежащие под прямым углом друг к другу, образуют диплосому. Вокруг центриолей (диплосомы) находится центросфера в виде бесструктурного плотного ободка с отходящими от него радиарно тонкими фибриллами.

Центриоли и центросфера вместе образуют клеточный центр. При подготовке к митотическому делению число центриолей в клетке удваивается.

Центриоли участвуют в формировании веретена деления клетки и аппаратов ее движения — ресничек и жгутиков. Реснички и жгутики являются цилиндрическими выростами цитоплазмы, в центре которых находится система микротрубочек.

Микрофиламенты представляют собой тонкие (5—7 нм) белковые нити, располагающиеся в виде пучков или слоев преимущественно в периферических отделах клетки. В состав микрофиламентов входят различные сократительные белки: актин, миозин, тропомиозин. Микрофиламенты выполняют опорно-двигательную функцию клеток. Промежуточные филаменты, или микрофибриллы, толщиной около 10 нм имеют различный состав в разных клетках. В эпителиальных клетках филаменты построены из белков кератинов, в мышечных клетках — из десмина, в нервных клетках — из белков нейрофибрилл. Промежуточные микрофиламенты также являются опорно-каркасными структурами клеток.

Включения цитоплазмы клеток служат временными структурами, они образуются в результате деятельности клетки. Различают включения трофические, секреторные и пигментные. Трофические включения бывают белковыми, жировыми и углеводными. Они служат запасами питательных веществ, накапливаются клеткой. Секреторные включения являются продуктами функции железистых клеток, содержат биологически активные вещества, необходимые организму. Пигментные включения — это окрашенные вещества, необходимые организму, которые скапливаются в клетке. Пигмент может быть экзогенного происхождения (красители и др.) и эндогенного (меланин, гемоглобин, биллирубин, липофусцин).

Ядро клетки. Ядро является обязательным элементом клетки, оно содержит генетическую информацию и регулирует белковый синтез. Генетическая информация заложена в молекулах дезоксирибонуклеинозой кислоты (ДНК). При делении клетки эта информация в равных количествах передается дочерним клеткам. В ядре имеется собственный аппарат белкового синтеза, контролирующий синтетические процессы в цитоплазме. В ядре на молекулах ДНК воспроизводятся различные виды рибонуклеиновой кислоты (РНК) — информационной, транспортной, рибосомной.

Ядро неделящейся клетки (интерфазное) чаще имеет сферическую или овоидную форму и состоит из хроматина, ядрышка, кариоплазмы (нуклеоплазмы), отграниченных от цитоплазмы ядерной оболочкой.

Хроматин интерфазного ядра представляет собой хромосомный материал — это разрыхленные, деконденсированные хромосомы. Деконденсированные хромосомы называют эухроматином. Таким образом, хромосомы в ядрах клеток могут находиться в двух структурно-функциональных состояниях. При деконденсированной форме хромосомы находятся в рабочем, активном состоянии. В это время они участвуют в процессах транскрипции (воспроизведения), репликации (от лат. replicatio — повторение) нуклеиновых кислот (РНК, ДНК). Хромосомы в конденсированном состоянии (плотном) неактивны, они участвуют в распределении и переносе генетической информации в дочерние клетки при клеточном делении. В начальных фазах митотического деления клеток хроматин конденсируется, образуя видимые хромосомы. У человека соматические клетки содержат 46 хромосом — 22 пары гомологичных хромосом и две половые хромосомы. У женщин половые хромосомы парные (ХХ-хромосомы), у мужчин — непарные (XY- хромосомы).

Ядрышко — это плотное, интенсивно окрашивающееся образование в ядре, округлой формы, размерами 1—5 мкм. Состоит ядрышко из нитчатых структур — нуклеопротеидов и переплетающихся нитей РНК, а также предшественников рибосом. Ядрышко служит местом образования рибосом, на которых синтезируются полипептидные цепи в цитоплазме клеток.

Нуклеоплазма — электронно-прозрачная часть ядра, представляет собой коллоидный раствор белков, окружающий хроматин и ядрышко.

Ядерная оболочка (нуклеолемма) состоит из внешней ядерной мембраны и внутренней ядерной мембраны, разделенных перинуклеарным пространством. В ядерной оболочке имеются поры, в которых располагаются белковые гранулы и нити (поровый комплекс). Через ядерные поры происходит избирательный транспорт белков, обеспечивающий прохождение макромолекул в цитоплазму, а также обмен веществ между ядром и цитоплазмой.